公告:为给大家更好的使用体验,同城网今日将系统升级,页面可能会出现不稳定状态,由此给您带来的不便,敬请谅解!
升级时间:2016-7-24 11:00 -- 2016-7-24 15:00

澳洲同城网

查看: 1022|回复: 0
打印 上一主题 下一主题

Manus回应撤出中国原因 首度披露经验教训(图)

[复制链接]

34万

主题

19

金豆

25万

积分

网站编辑

Rank: 8Rank: 8

性别
保密
积分
256690
金豆
19
鲜花
0
主题
349166
帖子
349167
注册时间
2019-12-26
跳转到指定楼层
楼主
发表于 2025-7-21 22:30:02 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式 来自: INNA

马上注册,结交更多同城好友,享用更多功能!

您需要 登录 才可以下载或查看,没有帐号?立即注册

x



Manus近期撤出中国市场、清空国内社交账号内容,全力转战海外市场,官方解释原因主要基于经营效率的调整及国际化布局。 北京时间7月19日,Manus联合创始人季逸超发布技术博客,首度从技术角度做出回应,总结创业以来在Agent研发与训练方面的经验教训。 单从技术层面来看,季逸超表示Manus会侧重押注上下文(Context)工程,借助构造“记忆”与流程实现产品快速迭代。主要包括押注上下文、不再训练模型,强调KV-Cache(Key-Value Cache,一种缓存机制)命中率意义,不动态添加工具,以及用文件系统承载持久上下文等方面。核心即节省底层模型训练成本,侧重训练效率的提高。 上下文在大模型中通常指模型在处理任务或生成输出内容时所参考的信息集合,能够帮助模型增强理解能力、提高任务性能、增强输出连贯性。此前月之暗面Kimi创始人杨植麟在采访中强调过上下文的重要性,他称,Ai-native(由AI定义产品形态)产品的终极价值在于提供个性化交互,而无损长上下文(LosslessLongContext)是达成这一目标的关键。他判断模型的微调长期来看不应存在,用户与模型的交互历史就是最好的个性化过程,而长上下文技术能更好地记录和利用这些交互历史。 另外,KV-Cache命中率至关重要,主要是因为高命中率可以提高推理效率,优化资源利用率,降低计算成本。也正基于此,KV-Cache常被称为Transformer模型推理阶段的效率核心。 选择从上述各方面提高训练效率,而非从底层模型开始投入,是季逸超过往多年总结的教训。他称,创业上一家公司(Peak Labs)时,团队决定从头开始为开放信息提取和语义搜索训练模型,但之后不久,OpenAI的GPT-3与Google的Flan-T5模型出现了,团队从头研发的内部模型一夜之间变得无关紧要。“讽刺的是,这些模型标志着上下文学习的开始,以及一条全新的前进道路。”季逸超称。 基于此前教训,创业Manus后,团队不再投入基座模型研发,而是从使用开源基础模型训练端到端Agent,与基于前沿模型上下文学习能力构建Agent两个选项中进行选择。虽然Peak Labs的教训令Manus团队意识到上下文的重要性,但这并不容易,经历过四次Agent框架调整才实现局部最优解。 但需注意的是,该策略仍存在局限,尤其在面对类似OpenAI刚发布的ChatGPT Agent时。核心原因在于ChatGPT Agent依托OpenAI专用模型,采用端到端训练,可以更好地处理复杂任务,而Manus虽然可以提高效率,但仍依赖外部多模型组合与工程优化,在任务执行连贯性与准确性上稍逊一筹。 另外,在Manus转战国际市场的节点,OpenAI凭借底层模型优势将Agent行业带入拐点,吸引更多开发者与用户至大厂平台,虽然创业公司在垂直领域具备生存空间,但仍不可避免地面临市场份额被争夺的挑战。尤其在当下Agent类产品存在同质化严重、商业模式不明、成本高企等困境时,上下文工程等方面的亮点不足以让创业公司跳脱出来,团队仍需持续优化技术策略,探索差异化发展路径。
免责声明
澳洲同城网是一个免费的公共信息平台,网站内容由网友自由发布,发布者拥有所发布信息的版权同时承担相应责任; 若所发布信息侵犯了您的权利,请反馈给澳洲同城网,我们核实后将进行相应处理!
官方微信公众号
澳洲同城网官方公众号
微信上也能找工作,找房子?关注万能的同城网官方公众号 localsyd,找到你找不到!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则




外汇平台
金牌家政
汽车网



















wuliu
你想了解我们吗?
联系我们
关注我们
官方微博 官方Facebook 官方Twitter
微信关注
官方微信公众号 官方微信服务号
官方公众号 客服微信
快速回复 返回顶部 返回列表